Recherche avancée sur les thèses de l'INSA de Lyon


Toma, Alina. Joint super-resolution/segmentation approaches for the tomographic images analysis of the bone micro-architecture [en ligne]. Thèse. Villeurbanne : Institut National des Sciences Appliquées de Lyon, 2016. Disponible sur : http://theses.insa-lyon.fr/publication/2016LYSEI019/these.pdf


Domaine(s) : D18 - Electromagnétisme, Electricité, Electronique
Indice Dewey : 616.075 707 2
Langue : Anglais
Mots-clés : Imagerie médicale, Osteoporose, Structure osseuse trabéculaire, Problème linéaire inverse mal posé, Méthode de super résolution / segmentation conjointe, Méthode d'optimisation, Medical imaging, Tomography, Osteoporosis, Trabecular bone micro-architecture, Super-resolution methods, Joint super-resolution /segment method



Directeur(s) de thèse : Peyrin, Françoise ; Sixou, Bruno
Etablissement de soutenance : INSA de Lyon
Etablissement de co-tutelle : Université de Lyon - 2015-...., École Doctorale Electronique, Electrotechnique, Automatique - Lyon
Laboratoire : Université de Lyon - 2015-...., École Doctorale Electronique, Electrotechnique, Automatique - Lyon, Institut national des sciences appliquées de Lyon - Lyon, CREATIS - Centre de Recherche et d'Application en Traitement de l'Image et du Son, UMR5515 - Lyon, Rhône, Ecole(s) Doctorale(s) : École Doctorale Electronique, Electrotechnique, Automatique (Lyon), Partenaire(s) de recherche : Institut national des sciences appliquées de Lyon (Lyon) (établissement opérateur d'inscription), CREATIS - Centre de Recherche et d'Application en Traitement de l'Image et du Son, UMR5515 (Lyon, Rhône) (Laboratoire), Centre de recherche en applications et traitement de l'image pour la santé (Laboratoire), Autre(s) contribution(s) : Su Ruan (Président du jury) ; Françoise Peyrin, Bruno Sixou, Su Ruan, Denis Kouame, Maria Jesus Ledesma-Carbayo (Membre(s) du jury) ; Denis Kouame, Maria Jesus Ledesma-Carbayo (Rapporteur(s))
Numéro national de thèse : 2016LYSEI019
Date de soutenance : 2016

Accès au format Numérique libre, PDF
Droits réservés, utilisation gratuite, conditions générales



Résumé français : L'analyse de la microstructure osseuse joue un rôle important pour étudier des maladies de l'os comme l'ostéoporose. Des nouveaux scanners périphériques haute résolution (HR-pQCT) permettent de faire des acquisitions de la micro-architecture osseuse in-vivo sur l'homme. Toutefois la résolution spatiale de ces appareils reste comparable à la taille des travées osseuses, ce qui limite leur analyse quantitative. L'objectif de cette thèse est de proposer de nouvelles approches jointes super-résolution/ segmentation pour une analyse quantitative plus fine des images HR-pQCT in-vivo de la structure osseuse trabéculaire. Dans une première étape nous nous sommes concentrés sur des méthodes 2D de super-résolution avec régularisation par variation totale (TV) puis par variation totale d'ordre plus élevé (Higher Degree TV), avec minimisation par un algorithme ADMM (Alternating Direction Method of Multipliers). Ensuite, nous avons proposé une méthode itérative combinant le principe de Morozov et la méthode de Newton pour estimer le paramètre de régularisation TV. Comparé à la méthode UPRE (Unbiased Predictive Risk Estimator), la méthode proposée est plus rapide et ne requiert pas un balayage exhaustif des valeurs des paramètres. Nous avons développé dans une deuxième étape une méthode de super-résolution/segmentation conjointe avec un a priori basé sur la Variation Totale et une relaxation convexe (Tvbox), qui permet d'améliorer les paramètres quantitatifs de l'os et de la connectivité 3D. La méthode a été validée sur des images expérimentales micro-CT déteriorées artificiellement. Finalement, en vue de l'application à des images réelles HR-pQCT, nous nous sommes intéressés à une approche conjointe semi-aveugle super-résolution/segmentation qui vise à estimer à la fois l'image binaire super-résolue et le noyau de convolution. Des résultats sur des images micro-CT et HR-pQCT sont présentés. En conclusion, notre travail montre que les méthodes d'optimisation basées sur la régularisation TV sont prometteurs pour améliorer la quantification de la micro-architecture osseuse sur des images HR-pQCT.


English abstract : The investigation of trabecular bone micro-architecture provides relevant information to determine the bone strength, an important parameter in osteoporosis investigation. While the spatial resolution of clinical CT is not sufficient to resolve the trabecular structure, the High Resolution peripheral Quantitative CT (HR-pQCT) has been developed to investigate bone micro-architecture in-vivo at peripheral sites (tibia and radius). Despite this considerable progress, the quantification of 3D trabecular bone micro-architecture in-vivo remains limited due to a lack of spatial resolution compared to the trabeculae size. The objective of this thesis is to propose new joint super-resolution/segmentation approaches for improving the quantitative analysis of in-vivo HR-pQCT images of the trabecular bone structure. To begin with, we have investigated 2D super-resolution methods based on Total Variation (TV) and Higher Degree Total Variation (HDTV) and Alternating Direction Method of Multipliers (ADMM) minimization. Afterwards, an iterative method combining the Morozov principle and the Newton method was proposed in order to estimate the TV regularization parameter. The proposed method provides a very good regularization parameter only in few iterations compared with the UPRE method that requires an extensive scanning of parameter values. Furthermore, we have developed a 3D joint super-resolution/segmentation method based on a TV a prior with a convex relaxation (TVbox). The validation of the proposed methods was made on experimental micro-CT bone images artificially deteriorated. The results showed an improvement of the bone parameters and 3D connectivity with the TVbox method. Moreover, we have investigated a semi-blind joint super-resolution/ segmentation approach aiming to estimate both the binary super-resolved image and the assumed Gaussian blurring kernel that is not known for the real HR-pQCT images. Results on micro-CT and HR-pQCT experimental bone images were presented. In conclusion, our work has shown that TV based regularization methods promise to improve the quantification of bone micro-architecture from HR-pQCT images.