Recherche avancée sur les thèses de l'INSA de Lyon


Gondre, Damien. Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank : Influences of material properties, operating conditions and system design on storage performances [en ligne]. Thèse. Villeurbanne : Institut National des Sciences Appliquées de Lyon, 2016. Disponible sur : http://theses.insa-lyon.fr/publication/2016LYSEI022/these.pdf


Domaine(s) : D16 - Energétique
Indice Dewey : 536.072
Langue : Anglais
Mots-clés : Energétique, Energie, Adsorption, Consommation d énergie, Approche numérique, Transfert de masse, Transfert de chaleur, Réservoir de stockage, Stockage de chaleur, Basse température, Propriétés thermiques, Energetic, Energy, Adsorption, Energy consunption, Numerical method, Mass transfer, Heat transfer, Storage capacity, Heat storage, Low temperature, Thermal properties, Solar thermal energy



Directeur(s) de thèse : Kuznik, Frédéric
Etablissement de soutenance : INSA de Lyon
Etablissement de co-tutelle : Université de Lyon - 2015-...., Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique - Villeurbanne, CETHIL - Centre d'Energétique et de Thermique de Lyon - Villeurbanne, Rhône
Laboratoire : Université de Lyon - 2015-...., Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique - Villeurbanne, CETHIL - Centre d'Energétique et de Thermique de Lyon - Villeurbanne, Rhône, Institut national des sciences appliquées de Lyon - Lyon, Ecole(s) Doctorale(s) : Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (Villeurbanne), Partenaire(s) de recherche : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) (Laboratoire), Institut national des sciences appliquées de Lyon (Lyon) (établissement opérateur d'inscription), Centre d'Energétique et de Thermique de Lyon (Laboratoire), Autre(s) contribution(s) : Jean-Jacques Roux (Président du jury) ; Frédéric Kuznik, Jean-Jacques Roux, Michel Pons, Jean Toutain, Loïc Favergeon, Kévyn Johannes, Henner Kerskes, Lingai Luo (Membre(s) du jury) ; Michel Pons, Jean Toutain (Rapporteur(s))
Numéro national de thèse : 2016LYSEI022
Date de soutenance : 2016

Accès au format Numérique libre, PDF
Droits réservés, utilisation gratuite, conditions générales



Résumé français : Le développement de solutions de stockage de l'énergie est un défi majeur pour permettre la transition énergétique d'un mix énergétique fortement carboné vers une part plus importante des énergies renouvelables. La nécessité de stocker de l'énergie vient de la dissociation, spatiale et temporelle, entre la source et la demande d'énergie. Stocker de l'énergie répond à deux besoins principaux : disposer d'énergie à l'endroit et au moment où on en a besoin. La consommation de chaleur à basse température (pour le chauffage des logements et des bureaux) représente une part importante de la consommation totale d'énergie (environ 35 % en France en 2010). Le développement de solutions de stockage de chaleur est donc d'une grande importance, d'autant plus avec la montée en puissance des énergies renouvelables. Parmi les technologies de stockage envisageables, le stockage par adsorption semble être le meilleur compromis en termes de densité de stockage et de maintient des performances sur plusieurs cycles de charge-décharge. Cette thèse se focalise donc sur le stockage de chaleur par adsorption, et traite de l'amélioration des performances du stockage et de l'intégration du système au bâtiment. L'approche développée pour répondre à ces questions est numérique. L'influence des propriétés thermophysiques de l'adsorbant et du fluide sur la densité de puissance d'une part, mais aussi sur la densité de stockage et l'autonomie du système, est étudiée. L'analyse des résultats permet de sélectionner les propriétés des matériaux les plus influentes et de mieux comprendre les transferts de chaleur et de masse au sein du réacteur. L'influence des conditions opératoires est aussi mise en avant. Enfin, il est montré que la capacité de stockage est linéairement dépendante du volume de matériau, tandis que la puissance dépend de la surface de section et que l'autonomie dépend de la longueur du lit d'adsorbant. Par ailleurs, le rapport entre l'énergie absorbée (charge) et relâchée (décharge) est d'environ 70 %. Mais pendant la phase de charge, environ 60 % de la chaleur entrant dans le réacteur n'est pas absorbée et est directement relâchée à la sortie. La conversion globale entre l'énergie récupérable et l'énergie fournie n'est donc que de 25 %. Cela montre qu'un système de stockage de chaleur par adsorption ne peut pas être pensé comme un système autonome mais doit être intégré aux autres systèmes de chauffage du bâtiment et aux lois de commande qui les régissent. Utiliser la ressource solaire pour le préchauffage du réacteur est une idée intéressante car elle améliore l'efficacité de la charge et permet une réutilisation de la part récupérée en sortie pour le chauffage direct du bâtiment. La part stockée sous forme sensible peut être récupérée plusieurs heures plus tard. Le système est ainsi transformé en un stockage combiné sensible/adsorption, avec une solution pour du stockage à long terme et pour du stockage à court terme.


English abstract : The development of energy storage solutions is a key challenge to enable the energy transition from fossil resources to renewable energies. The need to store energy actually comes from a dissociation between energy sources and energy demand. Storing energy meets two principal expectations: have energy available where and when it is required. Low temperature heat, for dwellings and offices heating, represents a high share of overall energy consumption (i.e. about 35 %). The development of heat storage solutions is then of great importance for energy management, especially in the context of the growing part of renewable energies. Adsorption heat storage appears to be the best trade off among available storage technologies in terms of heat storage density and performances over several cycles. Then, this PhD thesis focuses on adsorption heat storage and addresses the enhancement of storage performances and system integration. The approach developed to address these issues is numerical. Then, a model of an adsorption heat storage tank is developed, and validated using experimental data. The influence of material thermophysical properties on output power but also on storage density and system autonomy is investigated. This analysis enables a selection of particularly influencing material properties and a better understanding of heat and mass transfers. The influence of operating conditions is also underlined. It shows the importance of inlet humidity on both storage capacity and outlet power and the great influence of discharge flowrate on outlet power. Finally, it is shown heat storage capacity depends on the storage tank volume, while outlet power depends on cross section area and system autonomy on bed length. Besides, the conversion efficiency from absorbed energy (charge) to released energy (discharge) is 70 %. But during the charging process, about 60 % of incoming heat is not absorbed by the material and directly released. The overall conversion efficiency from energy provided to energy released is as low as 25 %. This demonstrates that an adsorption heat storage system cannot be thought of as a self-standing component but must be integrated into the building systems and control strategy. A clever use of heat losses for heating applications (in winter) or inlet fluid preheating (in summer) enhances global performances. Using available solar heat for system preheating is an interesting option since a part is instantly retrieved at the outlet of the storage tank and can be used for direct heating. Another part is stored as sensible heat and can be retrieved a few hours later. At least, it has the advantage of turning the adsorption storage tank into a combined sensible-adsorption storage tank that offers short-term and long-term storage solutions. Then, it may differ avoidable discharges of the sorption potential and increase the overall autonomy (or coverage fraction), in addition to optimizing chances of partial system recharge.